Minggu, 20 Mei 2018

Komputasi Kuantum (Quantum Computing)

Pengertian
Pengertian sederhana dari komputer kuantum adalah jenis chip processor terbaru yang diciptakan berdasar perkembangan mutakhir dari ilmu fisika (dan matematika) quantum. Singkatnya, chip konvensional sekarang ini perlu diganti dengan yang lebih baik.
Pengertian komputer kuantum adalah merupakan suatu alat hitung yang menggunakan sebuah fenomena mekanika kuantum, misalnya superposisi dan keterkaitan, untuk melakukan operasi data. Dalam komputasi klasik, jumlah data dihitung dengan bit; dalam komputer kuantum, hal ini dilakukan dengan qubit.

Sejarah
Ide mengenai komputer kuantum pertama kali muncul pada tahun 1970-an oleh para fisikawan dan ilmuwan komputer, seperti Charles H. Bennett dari IBM, Paul A. Benioff dari Argonne National Laboratory, Illinois, David Deutsch dari University of Oxford, dan Richard P. Feynman dari California Institute of Technology (Caltech).
Di antara para ilmuwan tersebut, Feynmanlah yang pertama kali mengajukan model yang menunjukkan bahwa sebuah sistem kuantum dapat digunakan untuk melakukan komputasi. Lebih jauh, Feynman juga menunjukkan bagaimana sistem tersebut dapat menjadi simulator bagi fisika kuantum. Dengan kata lain, fisikawan dapat melakukan eksperimen fisika kuantum melalui komputer kuantum.
Pada tahun 1985, Deutsch menyadari esensi dari komputasi oleh sebuah komputer kuantum dan menunjukkan bahwa semua proses fisika, secara prinsipil, dapat dimodelkan melalui komputer kuantum. Dengan demikian, komputer kuantum memiliki kemampuan yang melebihi komputer klasik.
Setelah Deutsch mengeluarkan tulisannya mengenai komputer kuantum, para ilmuwan mulai melakukan riset di bidang ini. Mereka mulai mencari kemungkinan penggunaan dari sebuah komputer kuantum. Pada tahun 1995, Peter Shor merumuskan sebuah algoritma yang memungkinkan penggunaan komputer kuantum untuk memecahkan masalah faktorisasi dalam teori bilangan.
Hingga saat ini, riset di bidang komputer kuantum terus dijalankan di seluruh dunia. Beberapa kendala terus dicari pernyelesaiannya. Berbagai metode dikembangkan untuk memungkinkan terwujudnya sebuah komputer yang memilki kemampuan yang luar biasa ini. Sejauh ini, sebuah komputer kuantum yang telah dibangun hanya dapat mencapai kemampuan untuk memfaktorkan dua digit bilangan. Komputer kuantum ini dibangun pada tahun 1998 di Los Alamos, Amerika Serikat, menggunakan NMR (Nuclear Magnetic Resonance).
Saat ini piha google sudah melakukan percobaan dan pembuatan tentang computer kuantum ini. Google meneraplan Algoritma yang sama telah diterapkan pada produk lab Google yakni Google Image Swirl dimana secara cerdas komputer bisa menentukan dan mengelompokkan mana gambar mobil Jaguar dengan mana gambar binatang Jaguar. Atau misalnya mana kelompok gambar buah Apel dengan kelompok gambar komputer apple. Ini adalah salah satu contoh pengembangan computer kuantum yang dibuat google.

Perbedaan komputer kuantum dengan komputer klasik
Memori komputer klasik merupakan string dari 0s dan 1s, dan ia mampu melakukan perhitungan hanya pada sekumpulan bilangan secara simultan. Memori komputer kuantum merupakan sebuah keadaan kuantum yang mrupakan superposisi dari bilangan-bilangan yang berbeda. Sebuah komputer kuantum dapat melakukan perhitungan klasik reversible secara bebas pada semua bilangan secara bersamaan. Pelaksanaan sebuah komputasi pada bilangan yang berbeda pada saat yang sama dan kemudian penginterferesian semua hasil untuk mendapatkan satu jawaban, menjadikan sebuah komputer kuantum jauh lebih kuat daripada komputer klasik (West, 2000).
Sepanjang sejarah komputasi, bit tetap merupakan unit komputasi dasar informasi. Mekanika kuantum memungkinkan pengkodean informasi dalam bit kuantum (qubit). Tidak seperti bit klasik, yang hanya bisa menyimpan nilai tunggal - baik 0 atau 1 - qubit dapat menyimpan baik 0 dan 1 pada saat yang sama. Selanjutnya, register kuantum 64 qubit dapat menyimpan nilai 264 sekaligus. Komputer Kuantum dapat melakukan perhitungan pada semua nilai-nilai ini pada saat yang sama. Namun, penggalian hasil dari perhitungan paralel masif telah terbukti sulit, membatasi jumlah aplikasi yang telah menunjukkan peningkatan kecepatan yang signifikan dibandingkan komputasi klasik. Paralelisme klasik juga dapat meningkatkan jumlah nilai yang ditangani secara bersamaan, tapi lama sebelum mencapai jumlah paralelisme yang dicapai oleh sebuah komputer kuantum, sebuah sistem klasik kehabisan ruang. Untuk sistem klasik, jumlah paralelisme meningkat dalam proporsi langsung dengan ukuran sistem.


Entanglement
Entanglement adalah istilah yang digunakan dalam teori kuantum untuk menggambarkan cara bahwa partikel energi/materi dapat menjadi berkorelasi, diduga dan diprediksi berinteraksi satu sama lain terlepas dari seberapa jauh mereka berada. Keadaan ini tidak memiliki analogi klasiknya. Keadaan terbelit, seperti pasangan EPR yang akan kita bahas segera, bertanggung jawab atas sebagian besar pencapaian paralelisme sistem kuantum. Dengan demikian, komputasi yang memanfaatkan paralelisme kuantum sering disebut pengolahan informasi “belitan” yang disempurnakan (entanglement–enhanced information processing).
"Secara fakta, teori tentang belitan (entanglement) telah menyebabkan para ilmuwan untuk percaya bahwa ada cara untuk mempercepat komputasi. Bahkan komputer saat ini telah mendekati titik di mana kecepatan mereka dibatasi oleh seberapa cepat elektron dapat bergerak melalui kabel - kecepatan cahaya. Baik dalam komputer kuantum atau tradisional, belitan (entanglement) bisa memecahkan masa lalu yang membatasi "(Manay, 1998).
Menurut mekanika kuantum kekuatan luar yang bekerja pada dua partikel dari sistem kuantum dapat menyebabkan mereka menjadi terbelit. Keadaan kuantum dari sistem ini dapat berisi semua posisi spin (momen magnetik internal) dari setiap partikel. Spin total sistem hanya bisa sama untuk nilai diskrit tertentu dengan probabilitas yang berbeda. Pengukuran spin total sistem kuantum tertentu menunjukkan bahwa posisi spin beberapa partikel tidak independen dari yang lainnya. Untuk sistem tersebut, ketika orientasi spin dari satu partikel diubah dengan beberapa alasan, orientasi spin dari partikel lain akan berubah secara otomatis dan cepat. Hukum yang yang telah dikembangkan sejauh ini tentang kecepatan cahaya tidak taati dalam kasus ini, karena perubahan orientasi spin terjadi segera. Setidaknya ada hipotesis untuk menggunakan fenomena ini dalam komputasi kuantum.
Kita telah mengetahui bahwa kecepatan komunikasi dibatasi oleh kecepatan cahaya karena tidak ada sesuatupun dapat melakukan perjalanan lebih cepat dari kecepatan cahaya. Pertanyaannya adalah bagaimana partikel dari sistem kuantum berkomunikasi ketika mereka mengubah orientasi spinnya dan akibatnya keadaan vektornya. Ilmuwan terkenal menghabiskan banyak waktu membahas masalah ini. Ide Einstein, bahwa beberapa "parameter tersembunyi" yang tidak diketahui dari sistem kuantum berkontribusi terhadap efek ini, telah ditolak secara teoritis dan eksperimental.
Hal ini adalah salah satu contoh yang menunjukkan perbedaan antara realitas klasik dan kuantum. Efek sistem kuantum ini dapat menjelaskan banyak aspek alam (misalkan karakteristik kimia dari atom dan molekul) dan telah dibuktikan melalui oleh eksperimen.


Qubits
Dalam sebuah percobaan yang terkenal, cahaya dari satu sumber melewati dua celah, menciptakan sebuah pola interferensi pada layar. Bahkan ketika sumber cahaya hanya memancarkan satu foton pada suatu waktu, pola interferensi muncul. Standar teori kuantum mendalilkan bahwa setiap foton bergerak pada kedua jalur (path) sekaligus. Dengan demikian, partikel dapat berada di dua tempat pada saat yang sama. Dalam situasi tersebut, kita mengatakan bahwa posisi partikel berada dalam superposisi dari dua keadaan.
Dua jalur perjalanan partikel dapat mewakili dua keadaan dari sebuah bit, 0 dan 1. Dalam mekanika kuantum, apabila sistem memiliki dua atau lebih peluang yang memungkinkan, ia dapat menjelajahi mereka secara bersamaan. Setiap sistem dua keadaan, seperti jalur foton, dapat mewakili qubit. Dalam komputer kuantum, kita malah mungkin menggunakan dua orbit elektron dalam atom untuk mewakili qubit. Atom bisa eksis dalam superposisi dari 0 dan 1, mirip seperti lonceng yang dipukul dapat bergetar pada dua frekuensi yang berbeda secara bersamaan.


Quantum Gates
Gerbang kuantum biasanya direpresentasikan sebagai matriks. Sebuah gerbang yang bekerja pada k qubit diwakili oleh 2 x 2 k k matriks kesatuan. Jumlah qubit dalam input dan output dari gerbang harus sama. Tindakan dari gerbang kuantum ditemukan dengan mengalikan matriks mewakili gerbang dengan vektor yang mewakili keadaan kuantum. Tidak seperti banyak gerbang logika klasik, gerbang logika kuantum yang reversibel (model komputasi dimana proses komputasi sampai batas tertentu adalah reversibel, yaitu waktu-dibalik).

 Algoritma pada Quantum Computing
 Para ilmuwan mulai melakukan riset mengenai sistem kuantum tersebut, mereka juga berusaha untuk menemukan logika yang sesuai dengan sistem tersebut. Sampai saat ini telah dikemukaan dua algoritma baru yang bisa digunakan dalam sistem kuantum yaitu algoritma shor dan algoritma grover.

Algoritma Shor
Algoritma yang ditemukan oleh Peter Shor pada tahun 1995. Dengan menggunakan algoritma ini, sebuah komputer kuantum dapat memecahkan sebuah kode rahasia yang saat ini secara umum digunakan untuk mengamankan pengiriman data. Kode yang disebut kode RSA ini, jika disandikan melalui kode RSA, data yang dikirimkan akan aman karena kode RSA tidak dapat dipecahkan dalam waktu yang singkat. Selain itu, pemecahan kode RSA membutuhkan kerja ribuan komputer secara paralel sehingga kerja pemecahan ini tidaklah efektif.

Algoritma Grover
Algoritma Grover adalah sebuah algoritma kuantum yang menawarkan percepatan kuadrat dibandingkan pencarian linear klasik untuk list tak terurut. Algoritma Grover menggambarkan bahwa dengan menggunakan pencarian model kuantum, pencarian dapat dilakukan lebih cepat dari model komputasi klasik. Dari banyaknya algoritma kuantum, algoritma grover akan memberikan jawaban yang benar dengan probabilitas yang tinggi. Kemungkinan kegagalan dapat dikurangi dengan mengulangi algoritma. Algoritma Grover juga dapat digunakan untuk memperkirakan rata-rata dan mencari median dari serangkaian angka, dan untuk memecahkan masalah Collision.


Implementasi Quantum Computing
Pada 19 Nov 2013 Lockheed Martin, NASA dan Google semua memiliki satu misi yang sama yaitu mereka semua membuat komputer kuantum sendiri. Komputer kuantum ini adalah superkonduktor chip yang dirancang oleh sistem D – gelombang dan yang dibuat di NASA Jet Propulsion Laboratories.
NASA dan Google berbagi sebuah komputer kuantum untuk digunakan di Quantum Artificial Intelligence Lab menggunakan 512 qubit D -Wave Two yang akan digunakan untuk penelitian pembelajaran mesin yang membantu dalam menggunakan jaringan syaraf tiruan untuk mencari set data astronomi planet ekstrasurya dan untuk meningkatkan efisiensi searchs internet dengan menggunakan AI metaheuristik di search engine heuristical. 
A.I. seperti metaheuristik dapat menyerupai masalah optimisasi global mirip dengan masalah klasik seperti pedagang keliling, koloni semut atau optimasi swarm, yang dapat menavigasi melalui database seperti labirin. Menggunakan partikel terjerat sebagai qubit, algoritma ini bisa dinavigasi jauh lebih cepat daripada komputer konvensional dan dengan lebih banyak variabel. 
Penggunaan metaheuristik canggih pada fungsi heuristical lebih rendah dapat melihat simulasi komputer yang dapat memilih sub rutinitas tertentu pada komputer sendiri untuk memecahkan masalah dengan cara yang benar-benar cerdas . Dengan cara ini mesin akan jauh lebih mudah beradaptasi terhadap perubahan data indrawi dan akan mampu berfungsi dengan jauh lebih otomatisasi daripada yang mungkin dengan komputer normal.


Sumber :
 
Copyright © Ezzooossss Softskill
Blogger Theme by BloggerThemes Sponsored by Internet Entrepreneur